Variational solutions for the discrete nonlinear Schrödinger equation

نویسنده

  • D. J. Kaup
چکیده

The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial function which contains six parameters, corresponding to: position, phase, amplitude, wavevector (velocity), chirp, and width. With this trial function, we can analytically average the Lagrangian, and then by varing the six parameters, obtain the evolution equations for these six parameters, within the variational approximation. Integration of these equations would give, within the variational approximation, the motion of a moving discrete soliton. Requiring all parameters to be stationary, one obtains the conditions for constructing the solution of the stationary discrete soliton. Here we treat the stationary variational solutions. For them, we find for small amplitudes, that there is only one stationary soliton, a doublet solution, which in the continuous limit, becomes the usual nonlinear Schrödinger soliton. At a certain critical amplitude, there is a pitchfork bifurcation, above which the stable singlet soliton apprears, with the doublet soliton becoming unstable. Lastly, using the variational solutions as a starting point, we iterate the full Lagrangian to obtain numerically, the exact discrete soliton solutions. Comparison between the variational and the exact numerical E-mail address: [email protected] (D.J. Kaup). 0378-4754/$30.00 © 2005 IMACS. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.matcom.2005.01.015 D.J. Kaup / Mathematics and Computers in Simulation 69 (2005) 322–333 323 discrete soliton solutions will be made. From these results, we are also able to make some general and important remarks concerning the validity and utility of the found variational soliton solutions. © 2005 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

Variational approximations in discrete nonlinear Schrdinger equations with next-nearest-neighbor couplings

Solitons of a discrete nonlinear Schrödinger equation which includes the next-nearest-neighbor (NNN) interactions are studied by means of a variational approximation (VA) and numerical computations. A large family of multi-humped solutions, including those with a nontrivial intrinsic phase structure, which is a feature particular to the system with the NNN interactions, are accurately predicted...

متن کامل

A remark on the existence of breather solutions for the Discrete Nonlinear Schrödinger Equation in infinite lattices: The case of site dependent anharmonic parameter

We discuss the existence of breather solutions for a Discrete Nonlinear Schrödinger equation in an infinite N-dimensional lattice, involving site dependent anharmonic parameter. We give a simple proof on the existence of (nontrivial) breather solutions based on variational approach, assuming that the sequence of anharmonic parameters is in an appropriate sequence space (decays with an appropria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2005